Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Front des Y-Gebäudes auf dem UPB Campus
Leichtbau ist eine Schlüsseltechnologie für Nachhaltigkeit Bildinformationen anzeigen

Front des Y-Gebäudes auf dem UPB Campus Leichtbau ist eine Schlüsseltechnologie für Nachhaltigkeit

Foto: Foto Hankeln / Entwurf Dohmeier-Fischer UPB

Publikationen

Hier finden Sie eine Liste der im Research Information System (RIS) eingetragenen aktuellen Veröffentlichungen der Wissenschaftler*innen des ILH und eine Übersicht über die in der Schriftenreihe des ILH veröffentlichten Dissertationen.

Im Seitenmenu sind die Berichte verlinkt.

Dissertationen

Leichtbaudissertationen, die in den Arbeitsgruppen des ILH angefertigt werden, erscheinen in der "Schriftenreihe "Institut für Leichtbau mit Hybridsystemen".

Liste der Dissertationen 2013 -2022

Auswahl der aktuellen ILH Veröffentlichungen im RIS (max. 8)


Liste im Research Information System öffnen

2022

Numerical Simulation of Solids Conveying in Grooved Feed Sections of Single Screw Extruders

F. Brüning, V. Schöppner, Polymers 14 (2022)

DOI


Microstructure transformations in a press hardening steel during tailored thermo‐mechanical processing

H. Westermann, A. Reitz, R. Mahnken, M. Schaper, O. Grydin, steel research international (2022)


Testing and modeling blast loading of a sandwich structure cored with a bio-inspired (balanus) core

F. Tuzgel, E.F. Akbulut Irmak, E. Guzel, A. Yucesoy, S. Sahin, A. Tasdemirci, M. Guden, Thin-Walled Structures (2022), 175, 109185

DOI


Corrosion fatigue behavior of electron beam melted iron in simulated body fluid

S. Wackenrohr, C.J.J. Torrent, S. Herbst, F. Nürnberger, P. Krooss, C. Ebbert, M. Voigt, G. Grundmeier, T. Niendorf, H.J. Maier, npj Materials Degradation (2022), 6(1), 18

<jats:title>Abstract</jats:title><jats:p>Pure iron is very attractive as a biodegradable implant material due to its high biocompatibility. In combination with additive manufacturing, which facilitates great flexibility of the implant design, it is possible to selectively adjust the microstructure of the material in the process, thereby control the corrosion and fatigue behavior. In the present study, conventional hot-rolled (HR) pure iron is compared to pure iron manufactured by electron beam melting (EBM). The microstructure, the corrosion behavior and the fatigue properties were studied comprehensively. The investigated sample conditions showed significant differences in the microstructures that led to changes in corrosion and fatigue properties. The EBM iron showed significantly lower fatigue strength compared to the HR iron. These different fatigue responses were observed under purely mechanical loading as well as with superimposed corrosion influence and are summarized in a model that describes the underlying failure mechanisms.</jats:p>


Oxide Modified Iron in Electron Beam Powder Bed Fusion—From Processability to Corrosion Properties

C.J.J. Torrent, P. Krooß, J. Huang, M. Voigt, C. Ebbert, S. Knust, G. Grundmeier, T. Niendorf, Alloys (2022), 1(1), pp. 31-53

<jats:p>Additive manufacturing (AM) processes are not solely used where maximum design freedom meets low lot sizes. Direct microstructure design and topology optimization can be realized concomitantly during processing by adjusting the geometry, the material composition, and the solidification behavior of the material considered. However, when complex specific requirements have to be met, a targeted part design is highly challenging. In the field of biodegradable implant surgery, a cytocompatible material of an application-adapted shape has to be characterized by a specific degradation behavior and reliably predictable mechanical properties. For instance, small amounts of oxides can have a significant effect on microstructural development, thus likewise affecting the strength and corrosion behavior of the processed material. In the present study, biocompatible pure Fe was processed using electron powder bed fusion (E-PBF). Two different modifications of the Fe were processed by incorporating Fe oxide and Ce oxide in different proportions in order to assess their impact on the microstructural evolution, the mechanical response and the corrosion behavior. The quasistatic mechanical and chemical properties were analyzed and correlated with the final microstructural appearance.</jats:p>


Measurement of material degradation in dependence of shear rate, temperature, and residence time

C.W.T. Schall, V. Schöppner, Polymer Engineering and Science (2022), 62(3), pp. 815-823

DOI


Influence of thermomechanical processing on the microstructural and mechanical properties of steel 22MnB5

A. Reitz, O. Grydin, M. Schaper, Materials Science and Engineering: A (2022), 838, 142780

In order to reduce CO2 emissions in the transport sector, the approach of load-adapted components is increasingly being pursued. For the design of such components, it is crucial to determine their resulting microstructure and mechanical properties. For this purpose, continuous cooling transformation diagrams and deformation continuous cooling transformation diagrams are utilized, however, their curves are strongly influenced by the chemical composition, the initial state and especially the process parameters. In this study, the influence of the process parameters on the transformation kinetics is systematically investigated using an innovative characterization method. The experimental setup allowed a near-process analysis of the transformation kinetics, resulting microstructure and mechanical properties for a specific process route with a reduced number of specimens. A systematic investigation of the effects of different process parameters on the microstructural and mechanical properties made it possible to reveal interactions and independencies between the process parameters in order to design a partial heating or differential cooling process. Furthermore, the implementation of two different cooling conditions, representative of differential cooling in the die relief method with tool-contact and non-contact areas, showed that the soaking duration has a significant influence on the microstructure in the non-contact tool area.


Influence of solidification rates and heat treatment on the mechanical performance and joinability of the cast aluminium alloy AlSi10Mg

M. Neuser, O. Grydin, Y. Frolov, M. Schaper, Production Engineering (2022)

In modern vehicle chassis, multi-material design is implemented to apply the appropriate material for each functionality. In spaceframe technology, both sheet metal and continuous cast are joined to castings at the nodal points of the chassis. Since resistance spot welding is not an option when different materials are joined, research is focusing on mechanical joining methods for multi-material designs. To reduce weight and achieve the required strength, hardenable cast aluminium alloys of the AlSi-system are widely used. Thus, 85–90% of aluminium castings in the automotive industry are comprised of the AlSi-system. Due to the limited weldability, mechanical joining is a suitable process. For this application, various optimisation strategies are required to produce a crack-free joint, as the brittle character of the AlSi alloy poses a challenge. Thus, adapted castings with appropriate ductility are needed. Hence, in this study, the age-hardenable cast aluminium alloy AlSi10Mg is investigated regarding the correlation of the different thicknesses, the microstructural characteristics as well as the resulting mechanical properties. A variation of the thicknesses leads to different solidification rates, which in turn affect the microstructure formation and are decisive for the mechanical properties of the casting as well as the joinability. For the investigation, plates with thicknesses from 2.0 to 4.0 mm, each differing by 0.5 mm, are produced via sand casting. Hence, the overall aim is to evaluate the joinability of AlSi10Mg and derive conclusions concerning the microstructure and mechanical properties.</jats:p>


Die maximale Anzahl anzuzeigender Publikationen wurde erreicht - alle Publikationen finden Sie im Research Infomation System.

Liste im Research Information System öffnen

Vorherige Berichte

Fakultät für Maschinenbau Fakultät für Naturwissenschaften Institut für Leichtbau mit Hybridsystemen
  2019/2020  
2019    
2018 2017/2018  
2017   2016/2017
2016 2015/2016  
2015   2014/2015
2014 2013/2014  
2013   2013
ILH Flyer

Hier finden Sie kurzgefasst die wichtigsten Informationen zum ILH.

Jahresbericht MB

Neuigkeiten aus der Fakultät für Maschinenbau erfahren Sie aus dem aktuellen Jahresbericht.

Jahresbericht NW

Neuigkeiten aus der Fakultät für Naturwissenschaften erfahren Sie aus dem aktuellen Zweijahresbericht 19/20.

Kontakt

Dr. Silvia Dohmeier-Fischer

Institut für Leichtbau mit Hybridsystemen (ILH)

Geschäftsführung des Instituts für Leichtbau mit Hybridsystemen

Silvia Dohmeier-Fischer
Telefon:
+49 5251 60-3937
Fax:
+49 5251 60-5172
Büro:
Y2.101

Sprechzeiten:

Mo. bis Fr. 8:30 - 12:00 Uhr

Zeitweise im Homeoffice, nehmen Sie gerne Kontakt per E-Mail oder Teams auf.

Die Universität der Informationsgesellschaft